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Motivation

• Vision sensors for entry, descent, and landing 

(EDL) provide benefits with minimal added mass

• E.g. vision-based Terrain Relative Navigation (TRN)

• Critical for selection of Mars 2020 landing site [1]

• Matches images with map for localization at ~4.2 km to 

~2 km

• Uses high performance Vision Compute Element (VCE)

• During powered descent, soft landers need to 

remove residual velocity at low altitude

• Altitude and velocity need to be sensed

• Commonly (i.e. Mars 2020) a combination of IMU 

and radar are used for this

• Radar is typically either:

• Expensive and heavy with excellent performance

• Inexpensive and lightweight with poor performance

• Wide-baseline stereo vision could provide an 

inexpensive and lightweight alternative altitude

and velocity sensor for future missions

• Requires only addition of 2× stereo cameras

• For slow-moderate descent rates, could use 

capabilities of existing VCE for image processing
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Jezero Crater, Mars 2020 landing site [1,2]

Mars 2020 landing sequence using TRN [3]
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Proposed Concept of Operations
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25km-500m TRN Position Estimation 

• (e.g. Mars 2020 EDL LVS)

500m-30m Stereo Based Altitude

200m-30m Stereo Based Velocity

30m-Surface IMU based Altitude and Velocity

Two 12˚ FOV 

cameras on 2m 

baseline

25km

12km

500m

30m

0m

One 90˚ FOV 

camera

IMU

Notional Sensor Operation 

TRN Terrain relative navigation EDL Entry, descent, and landing IMU Inertial measurement unit

FOV Field of view LVS Lander vision system
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Knowledge Gap

• Stereo vision 

• Proven for rover operations at < 15 m range and oblique viewpoint

• Theoretical performance adequate for entry, descent and landing (EDL)

• EDL-level performance not proven

• Controlled tests are required to verify that stereo vision can be used 

in practice for EDL at ranges up to 500 m

• Verify stereo vision accuracy Ground test

• Verify stereo vision feasibility in flight-like scenario Flight test

• Verify visual odometry accuracy Flight test

• Verify stereo precision meets theoretical performance Flight test
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Left Image Right Image Range Image
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Test Hardware and Software

• Stereo cameras

• 2× IDS UI-3180CP-M-GL with USB 3.0 interface

• Python 5000 detector (2/3”, 2592×2048, CMOS)

• Same as Mars 2020 LVS camera (LCAM)

• Lenses

• 2× Schneider Xenon-Topaz 2.0/38mm 

• 18.6˚ horizontal field of view

• Ground truth pose sensor

• xNav 550 GNSS/INS

• 2× GPS antennas

• Ground truth range sensor

• Leica Total Station

• Data collection (images)

• Laptop running StreamPix 7

• Data collection (ground truth)

• Onboard xNav550

• Post-processing with RT Post-Process
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Ground Test Overview

• Cameras mounted coaxially at 2 m baseline on 80/20 Aluminum bar

• Positioned atop JPL parking structure overlooking the Arroyo Seco

• Images taken of textured patch at ranges between 62 and 516 m

• Leica Total Station measured retroreflector distance (co-located with patch)

Demonstration of Stereo Vision For Deorbit Descent and Landing | Timothy Setterfield

62 m 516 m
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Ground Test Calibration

Intrinsic Calibration (Monocular)

• Internal camera parameters such as 

focal length and distortion
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Extrinsic Calibration (Stereo)

• Translation and rotation between left and 

right camera
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Ground Test Results

• Dense depth map extracted

• Texture patch position located in 

rectified images (and depth map)
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Measured 

Depth 

(LTS)

# of 

Points in 

Patch

Mean Stereo Depth 

Error

3-σ Stereo Depth 

Error

62.034 m 8713 -0.385 m (0.620 %) 0.372 m (0.599 %)

78.297 m 5095 -0.371 m (0.474 %) 0.417 m (0.533 %)

144.774 m 1526 -0.246 m (0.170 %) 1.568 m (1.083 %)

204.670 m 365 -1.848 m (0.903 %) 2.422 m (1.184 %)

270.170 m 269 -1.037 m (0.384 %) 7.016 m (2.597 %)

354.953 m 171 0.624 m (0.176 %) 7.745 m (2.182 %)

395.379 m 156 -3.097 m (0.783 %) 3.266 m (0.826 %)

466.546 m 100 3.181 m (0.682 %) 7.087 m (1.519 %)

515.977 m 47 25.023 m (4.850 %) 41.636 m (8.069 %)

< 1% patch mean range error below 500 m 
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Flight Test Overview

• Cameras mounted coaxially at 1.71 m baseline on the 

struts of an ASTAR AS350B3E helicopter

• 1Hz synchronized imaging triggered by GPS 1PPS

• Dual GPS antennas mounted on aft and forward 

cross-tubes

• xNav 550 secured to helicopter floor

• 2× operators in helicopter back seat

• Recording start/stop, exposure time adjustment, xNav

550 GNSS/INS convergence monitoring, ground comms

• Images taken in vicinity of Pisgah lava flows, CA

• Hemispherical hazard mounts and calibration targets 

placed at surveyed locations on ground

• 11× ascent/descent image sequences recorded with 

varied terrain and lighting conditions
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GPS Elevation Bias Removal

• Surveyed targets, with known location, were imaged at low altitudes

• Pixel locations of targets provided a bearing vector from target to camera

• Camera location triangulated

• GPS bias corrected for when calculating ground truth altitude
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Image Pairs with SIFT Features. Right to Left Camera Rotation Change.

Flight Test Calibration

• Camera pointing directions unknown due to ~10-20 Hz camera vibration

• Flight implementation needs a rigid bar between cameras

Initial Intrinsic Calibration: 

• Used ground test surveyed monocular calibration

Initial Extrinsic Calibration:

• Translation magnitude measured using Leica Total Station rangefinder

• Camera orientation determined individually for each image pair

• Natural SIFT features detected and matched between left and right images

• Reprojection and depth errors of triangulated features minimized

• Required use of GPS altitude and assumed planar ground
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Flight Test Calibration and Error Model

Final Intrinsic Calibration:

• Surveyed monocular calibration taken at < 10 m

• Flight stereo images taken at 30-500 m

• Intrinsic calibration refined for optimal ground planarity of processed flight data

Final Extrinsic Calibration:

• Extrinsic calibration performed once more with final camera intrinsics

Error Model
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Stereo 

baseline

Camera horizontal 

field of view

Horizontal 

resolution

Correlation 

accuracy (3-σ)

Misalignment between 

cameras (3-σ)
Baseline stability (3-σ)

1.71 m 0.325 rad (18.6°) 2592 pixels 1 pixel 0.0003 rad (2.4 px) 0.002 m
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Flight Test Results – Feature Variance

Altitude Error

• Orange shape

• Point distribution

• Blue trace

• ±3σ error

• Green trace

• ± 3σ model

Angular Ray Gaps

• Green trace

• ±3σ model

• Red trace

• ±3σ reprojection

ray gap

• Dashed blue trace

• # of features
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Flight Test Results – Dense Depth

• Terrain maps summary 487 m → 32 m
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Flight Test Results – Visual Odometry

• Visual odometry was performed using Mars Science Laboratory software

• Image sequence from 199 m → 37 m processed at 1024×1296 px (downsampled)

199 m →      192 m

37 m     →      32 m

Demonstration of Stereo Vision For Deorbit Descent and Landing | Timothy Setterfield

Feature outlier rejection Feature tracks
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Flight Test Results – Visual Odometry

• Visual odometry calculated translation compared with GPS-derived ground truth

• Motion errors much less than GPS “ground truth” 3-σ uncertainty of ±6 m

• Error at lowest altitude (37 m) is [0.08, 0.12, 0.09] m from 1 Hz data

• Horizontal velocity measurement error of 14 cm/s

• Vertical velocity measurement error of 9 cm/s

• Low enough for soft touchdown for most planetary landing missions
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Conclusions

• Final landing phase requires knowledge of altitude and velocity

• Wide baseline (~2 m) stereo vision is a viable replacement for 

radar to sense:

• Altitude at < 1% error from altitudes of 500 m → 30 m

• Horizontal and vertical velocity on order of 10 cm/s at ~40 m altitude

• For some landing missions, wide-baseline stereo vision is a 

viable sensor for soft landing

• Potential use cases include landing on Ceres, the Moon, Phobos, and 

other small bodies

• Need high performance computing for stereo matching 

• e.g. Vision Compute Element on Mars 2020
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Thank You

Questions?
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